A Shared Task on Multimodal Machine Translation and Crosslingual Image Description
نویسندگان
چکیده
This paper introduces and summarises the findings of a new shared task at the intersection of Natural Language Processing and Computer Vision: the generation of image descriptions in a target language, given an image and/or one or more descriptions in a different (source) language. This challenge was organised along with the Conference on Machine Translation (WMT16), and called for system submissions for two task variants: (i) a translation task, in which a source language image description needs to be translated to a target language, (optionally) with additional cues from the corresponding image, and (ii) a description generation task, in which a target language description needs to be generated for an image, (optionally) with additional cues from source language descriptions of the same image. In this first edition of the shared task, 16 systems were submitted for the translation task and seven for the image description task, from a total of 10 teams.
منابع مشابه
Findings of the Second Shared Task on Multimodal Machine Translation and Multilingual Image Description
We present the results from the second shared task on multimodal machine translation and multilingual image description. Nine teams submitted 19 systems to two tasks. The multimodal translation task, in which the source sentence is supplemented by an image, was extended with a new language (French) and two new test sets. The multilingual image description task was changed such that at test time...
متن کاملSheffield MultiMT: Using Object Posterior Predictions for Multimodal Machine Translation
This paper describes the University of Sheffield’s submission to the WMT17 Multimodal Machine Translation shared task. We participated in Task 1 to develop an MT system to translate an image description from English to German and French, given its corresponding image. Our proposed systems are based on the state-of-the-art Neural Machine Translation approach. We investigate the effect of replaci...
متن کاملOSU Multimodal Machine Translation System Report
This paper describes Oregon State University’s submissions to the shared WMT’17 task “multimodal translation task I”. In this task, all the sentence pairs are image captions in different languages. The key difference between this task and conventional machine translation is that we have corresponding images as additional information for each sentence pair. In this paper, we introduce a simple b...
متن کاملSHEF-Multimodal: Grounding Machine Translation on Images
This paper describes the University of Sheffield’s submission for the WMT16 Multimodal Machine Translation shared task, where we participated in Task 1 to develop German-to-English and Englishto-German statistical machine translation (SMT) systems in the domain of image descriptions. Our proposed systems are standard phrase-based SMT systems based on the Moses decoder, trained only on the provi...
متن کاملUnraveling the Contribution of Image Captioning and Neural Machine Translation for Multimodal Machine Translation
Recent work on multimodal machine translation has attempted to address the problem of producing target language image descriptions based on both the source language description and the corresponding image. However, existingwork has not been conclusive on the contribution of visual information. This paper presents an in-depth study of the problem by examining the differences and complementaritie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016